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Traditional Experiments vs.
Validation Experiments

Goals of traditional experiments:

1. Improve the fundamental understanding of the physics:
 Ex: performance of new fuels; departure from nucleate boiling

2. Determine parameters in existing mathematical models:

 Ex: model calibration experiment for bubbly flows; model calibration
experiment for crack propagation in fuels

3. Assess subsystem or complete system performance:

 Ex: loss of coolant experiment; plant safety performance during various
subsystem failure and excitation scenarios

* Goal of a model validation experiment:

— An experiment that is designed and executed to quantitatively estimate a
mathematical model’s ability to simulate a well characterized experiment.

* The customer of a model validation experiment is usually a model
developer or computational analyst.



Validation Experiment Hierarchy
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Validation Hierarchy for Sub-cooled Boiling
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Examples of Validation Databases
Related to Nuclear Power

* Organization for Economic Co-operation and Development/
Nuclear Energy Agency (OECD/NEA), International Fuel
Performance Experiments (IFPE) Database

* OECD/NEA Shielding Integral Benchmark Archive and
Database (SINBAD)

* OECD/NEA International Reactor Physics Benchmark
Experiment Evaluation (IRPhE) Project

* OECD/NEA Expert Group on Multi-Physics Experimental
Data, Benchmark, and Validation (EGMPEBV), newly formed

* Generation IV Materials Handbook database
* Loss-of-Fluid Test (LOFT) database at INL

* Proprietary or classified databases, e.g., Westinghouse
Advanced Loop Testing, Bettis Atomic Power Laboratory,
Knolls Atomic Power Laboratory, etc.



Six Characteristics of a Validation Experiment

1. A validation experiment should be jointly designed and
executed by experimentalists and computationalists:
— Close working relationship from inception to documentation
— Elimination of the typical competition between each
— Complete candor concerning strengths and weaknesses

2. A validation experiment should be designed to capture the
relevant physics, all initial and boundary conditions, and all
auxiliary data needed for a simulation:

— Computational simulation input data should be measured in the
experiment and key modeling assumptions understood

— Characteristics and imperfections of the experimental facility
should be measured and included in the simulation

(Ref: Aeschliman and Oberkampf, 1998)



Characteristics of a Validation Experiment
(continued)

3. A validation experiment should use any possible synergisms
between experiment and computational approaches:
— Offset strengths and weaknesses of computation and experiment

— Use simulations of the “empty” facility to better understand the
operation of the facility

— Use experimental data from the “empty” facility to calibrate
certain model parameters

4. Independence between computational and experimental
results should be maintained where possible:
— The flavor of a blind comparison should be maintained if possible

— All input data needed for the simulation should be measured and
provided

— Once system response measurements are available to the
analyst, calibration usually occurs



Characteristics of a Validation Experiment
(continued)

5. A hierarchy of experimental measurements should be made
which presents an increasing range of computational difficulty:
— Qualitative data (e.g., visualization) and quantitative data
— Functionals, local variables, derivatives of local variables

— Computational solution data should be processed in a manner similar to the
experimental measurement data

6. Carefully employ experimental uncertainty analysis procedures

to delineate and quantify random and correlated bias errors:

— Experimentalist should provide uncertainty estimates on system response
data and input quantities needed by the code

— Use traditional or statistical design of experiments methods to estimate
random and correlated bias errors in measurements

— If possible, conduct experiments using different diagnostic techniques or
different experimental facilities



What is the Goal of a
Model Validation Experiment?

e Estimation of the model form uncertainty for the specific
conditions and physics of the experiment

* What makes this difficult?
— Measurement of all important model input data
— Estimation of response variability and measurement uncertainty

* Measured input data characterizes:
— System geometry
— Initial conditions
— System physical parameters
— Boundary conditions
— System excitation

* As a result, the experimentalist must:
— Measure and document model input and system response data

— Estimate and document experimental uncertainty on both model
input data and system response data



Nondeterministic Simulation of Experiments

 Computational simulation can be viewed as a mapping of
input data to output data using the mathematical model

M(SG,IC,PMP,BC.SE)— SRO

* Because of missing data or variability of input data from the
experiment, we must conduct non-deterministic simulations

Uncertain inputs Propagation of Uncertain outputs
to the model uncertainties from the model
through the model

System geometry, SG — E—

: . given by a set of System response
Physical modeling parameters, PMP =—pp primary PDEs, plus —— quantities, SRQs

Boundary conditions, BC —e| SZE,°;§.§‘,’,?§Z’3§ for —

System excitation, SE s ot >




Pre-Experiment
Calculations Needed

Model Accuracy Assessment,

Calibration and Prediction

Update (Calibrate) Computational Model (if Needed)

1
1
|
Computational | System Response 1
Model Quantity of Interest V?\l/:gﬁ'gn :
i ! '
2 Qoo !
Ze 252 !
o ® O =T _ Validation I
c £ ESS Difference _ No
o 5382 Metric Result
ifet oo 8
O] g
5 2 E
\ £ O Adequate?
Physical System Response
Experiment Quantity of Interest
Accuracy
* Requirements I No

L---------------------------I

Improve/Add Experimental Measurements (if Needed)

(from Oberkampf and Barone, 2006)

Yes

Prediction

Apply Computational
Model to Application
of Interest




Example of a Validation Metric:
Area Metric

* The validation metric is defined to be the area between the
CDF from the simulation and the empirical distribution
function (EDF) from the experiment

d(F,S,)= J [F(x)=S,(0)|dx  (Minkowski L, metric)
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(Ref: Ferson et al, 2008)



What is the Impact of
Missing Input Data from the Experiment?

* Unmeasured or undocumented input data leads to either:
— Calibration or tuning of parameters in the model
— Increased uncertainty in the predicted output. This does not allow
us to critically assess the predictive accuracy of the model.
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Suggestions for the Path Forward

e Evaluation of existing experimental databases for completeness
and documentation of:

— Input data needed for simulation
— Estimation of experimental uncertainty on both input and output data
— Existence of multiple experimental realizations or different facilities

* Which perspective is more constructive for planning new
validation experiments?

Physical processes in need Applications areas in need
of improved modeling VErsus  of improved understanding

* Whichever perspective is used, conduct simulations of planned
experiments to determine the most important input data to be
measured, i.e., conduct sensitivity analyses

* Improve the understanding of recommended characteristics of
validation experiments among experimentalists and analysts
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